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Abstract

Mach wave radiation from supersonic jets is revisited to better quantify the extent to which

linearized equations represent the details of the actual mechanism. To this end, we solve the

linearized Navier-Stokes equations (LNS) with precisely the same mean flow and inflow dis-

turbances as a previous direct numerical simulation (DNS) of a perfectly expanded turbulent

M = 1.92 jet. I We restrict our attention to the first two azimuthal modes, n = 0 and n = l,

which constitute most of the acoustic field. The direction of peak radiation and the peak Strouhal

number matches the DNS reasonably well, which is in accord with previous experimental justifi-

cation of the linear theory. However, it is found that the sound pressure level predicted by LNS

is significantly lower than that from DNS. In order to investigate the discrepancy, individual

frequency components of the solution are examined. These confirm that near the peak Strouhal

number, particularly for the first helical mode n = 1, the amplification of disturbances in the

LNS closely matches the DNS. However, away from the peak frequency (and generally for the

azimuthal mode n = 0), modes in the LNS are damped while those in the DNS grow at rates

comparable to those at the peak Strouhal number.



1 Introduction

There is a considerable body of evid_'nce connecting the dynamics of large-scale structures

in turbulent free shear layers to linear instability waves, 2-4 Theoretical "_ and experimental 6

evidence also suggests that tile noise made by the large structures dominates the noise from

perfectly expanded supersonic jets. The mechanism for the radiation is thought to be the

generation of Mach waves due to the supersonic advection (relative to the ambient) of the

structures.

Noise models based on these ideas have been developed for mixing layers T and jets 5 using

matched asymptotic expansions. This approach matches near-field solutions of the linearized

equations for slowly spreading flow to solutions of the wave equation in the far field. The theory

correctly predicts the peak Strouhal nmnber and noise directivity from the most amplifled linear

mode when compared to corresponding jet data. 6`s

The noise amplitude cannot be predicted by linear theory alone, a,s it is directly proportional

to the amplitude of the turbulent fluctuations at the nozzle lip that are presumably themselves

the result of nonlinear processes. In order to scale the far field data, Tam &: Chen 9 consider

a single instability wave at any given frequency as representative of the energy carrying wave

component of the turbulence, neglecting the continuous spectrum of convected disturbances.

Then a uniformly distributed stochastic excitation seeds the instabilities at the nozzle lip region,

and the amplitude of this excitation is set to match the turbulent kinetic energy of the flow at

the nozzle lip.

While such calculations provide a framework for prediction, they do not provide for a quan-

titative evaluation of the theory. Indeed, such an evaluation has not been possible in the past,

due to the daunting task of simultaneously measuring the incident turbulent fluctuations at the

nozzle lip and the far field sound. An alternative, albeit restricted to relatively low Reynolds

number, is Direct Numerical Simulation (DNS). Recently, Freund, Lele K: Moin I computed a

turbulent jet at Mach number M = 1.92. Though the Reynolds number was low (Re = 2000),

it was shown that the directivity was similar to higher Reynolds number jets with similar con-

vective Mach numbers. While such Direct Numerical Simulations are themselves forced with an

incident turbulent field (which is of necessity somewhat artificial, it not being possible to fully

3



simulatetheinteriorofttwm)zzle),thefluctuationfieldsat theinflow,asfunctionsofspaceand

time,arecompletelydetermined.Thereforetheycanbeusedasinputto lineartheory,andthe

predictionscanbecompared with the acoustic field directly determined in the DNS, thereby

providing a detailed quantitative evaluation of the theory.

In principle, the comparison between DNS and linear theory could be obtained using adjoint-

based methods to project the DNS data onto the most unstable linear mode, at each frequency,

and to subsequently evolve that mode according to the matched asymptotic expansion (MAE)

theory discussed above. However, construction of the adjoint eigenfunctions within the MAE

framework of the models is currently an unmet challenge. We consider in the present paper the

alternative of: solving the full initial-boundary value problem for the iinearized Navier-Stokes

(LNS) equations and comparing the acoustic field so obtained to the DNS calculations discussed

above. By using precisely the same inflow disturbances, we provide a direct evaluation of the

linear theory of Mach wave radiation from linear instability waves for the first time.

Moreover, the comparison of LNS and DNS provides an assessment of the importance of

nonlinearity in determining the amplitude of the radiation. We must note at the outset that it

will not be possible to discriminate between a failure of linear theory to correctly predict the

evolution of disturbances in the near field, and a failure of linear theory because of nonlinear

sound generation mechanisms (such as nonlinear interactions that would comprise the "self-

noise" part of Lighthiii's Source). In other words, the linear predictions in the present work are

not necessarily the same as the linear noise source mechanism often called 'shear noise' where

fluctuations (potentially themselves the result of nonlinear processes) interact with the mean

flow to create sound.

In the next section, the computational techniques are described. A more detailed account of

the methods and issues is available elsewhereJ ° Results are presented and discussed in section

3, and a summary of our conclusions is given in section 4.

2 Computational Technique

The linearized Navier-Stokes equations were solved directly using the mean flow quantities

and inflow boundary conditions, including an identical specification of incoming turbulent dis-
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turbances,asin theFreundet al. l sinnllation. Derivatives are computed using a sixth-order

compact scheme _l in axial and radial directions and a Fourier spectral method in the azimuthal

direction. A fourth-order Runge-Kutta algorithm advanced the solution in time. Tile coordi-

nate singularity at r = 0 is treated with the method proposed by' Mohseni & Colonius. _' A

fourth-order compact Pad6 mid-point formula was used to interpolate the flow data onto the

radial grid of the LNS calculations which had the same spacing but was staggered from the DNS

grid as necessitated by the centerline treatment.

In the DNS, special inflow conditions _3 were used to model the behavior of the shear layer a

short distance downstream of the nozzle. The inflow data came from an auxiliary DNS computa-

tion ofa streamwise periodic (temporally' evolving) jet, 14 which had a streamwise period of 21R,

where R is the jet radius at the inlet. In order to decorrelate the turbulence of the incoming flow,

the amplitude of the spectral components of the incoming disturbances were randomly jittered

by as much as of 5% of their amplitude. The decorrelation of the small scale (high frequency)

turbulence statistics within the computational domain was verified a posterwri. For some of

the low frequency results presented in this paper, remnants of the 21R periodicity remain in

the DNS data. This is expected since free shear layers that are known to be sensitive to initial

conditions, and a long distance is required for the large scales to be completely decorrelated.

In the LNS calculations, any correlation of the incident turbulent persists indefinitely. We note

that while our results are affected by this correlation, the conclusions remain valid since we are

comparing the relative evolution of two flows with identical inflow disturbances.

The flow parameters in the LNS calculations were set as in the DNS calculation,

TOO

Pr = 0.7, -- = 0.89,
Tj

he, = pyj____DD= 2000, V = = 1.92.
#i aj

The isentropic convective Mach number _s for these conditions was Me = 0.99, the momentum

thickness of the incoming shear layer was 0.1R, and the computational domain extended la.an

in the radial direction and 36R in the axial direction, see Fig. 1. This Reynolds number is

obviously lower than most laboratory jets. However, it is in this low-Reynolds-number limit

that linear instability waves would be expected to best represent the flow. The differences we
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Figure 1: Computational domain and buffer zones.

note are only expected to be more substantial at higher Reynolds numbers. Likewise, the initial

shear layer momentum thickness, 0.1R, is considerably larger than most laboratory jets, which

will affect the stability of different frequency modes. However, our conclusions will still be

general since we are comparing two jets with this same thickness. Results are expected to be

insensitive to the Mach number so long as the instability waves have phase velocities that are

supersonic relative to the ambient.

The computational mesh for the DNS calculation had 640 x 270 x 128 points in the axial,

radial, and azimuthal directions, respectively. We found that in LNS calculations full resolution

in the axial direction and half resolution in the radial direction provided results that were

essentially identical to those computed with the DNS resolution. Since the acoustic field from

DNS was dominated by the first two azimuthal modes (see below) we use only 4 points in the

azimuthal direction, noting that higher azimuthal modes are completely decoupled in linear

computations.
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3 Results

3.1 Sound Pressure Level

We begin by comparing the sound pressure level (SPL) of the DNS and LNS data at r = 12R,

which is the maximum extent of tile physically realistic (non-boundary-zone) portion of the

DNS. The results of this computations are presented in Figs. 2 and 3.

There are several features to note in these figures. First, the acoustic field of the DNS data is

dominated by modes zero and one. When all other modes are excluded, the total SPL is reduced

by only 1.5 dB. This confirms the predictions from linear stability theory that the acoustic field

of cold jets is dominated by the first two modes, s Because of this, we limit our attention in

what follows to only the first two modes. Second, in agreement with predictions from linear

stability theory, s the azimuthal mode n = 1 in the LNS calculation contributes the most to the

total SPL and is clearly the dominant part of the generated noise. However, the same trend is

not observed in the DNS data. The maximum SPL of the DNS data for n = 0 alone is actually

higher than that of mode n = 1 and cannot be ignored, while in the LNS calculations considering

only n = 1 provides a reasonable estimate for the total SPL. Contrary to the LNS calculations,

the radiation from mode n = 0 in the DNS peaks further downstream than it does for mode

n = 1. This can be interpreted to mean that the apparent location of the sound sources of mode

n = 0 of the DNS calculation is concentrated further away from the nozzle.

In both LNS and DNS, the acoustic field is highly directional. For n = 1 the general

directivity profile is reasonably well captured. Using this mode alone in a strictly linear model

would provide a reasonable prediction of the relative directivity. However, its amplitude is

underestimated by 4dB at r = 12R. The agreement is poor for n = 0, where LNS data is less

intense by as much as 15 dB. Because azimuthal mode n = 1 contributes the most to the total

SPL of the LNS calculations, the shape of the total directivity of the LNS data is qualitatively

similar to the DNS though its level is underestimated by as much as 8 dB at r = 12R. There is

clearly something missing from the linear solution.

Note that these amplitude comparisons are performed outside the jet, but only at r = 12R.

Shocks in the sound field t will increase dissipation of the noise so one might expect a somewhat

better agreement at a larger distance from the jet, but the 8 dB difference at r = 12 points to

7



160 -

150

140

CQ

130

120

.. ........... - ...................... -.-,

n ,./" t

/ ,'- ,?" ./

_ /-<i K.-""
L,/><.

..... /],
- , .I__/:"

O0 I I i11 10 20 30

x/R

Figure 2: SPL of the DNS at r = 12R: --

and 1 modes; .... all other modes.

total; .... n = 0 mode zero; ---_

4O

n = 1 mode; ........ both n = 0



160 -

150

14O

03

13O

[
120

,

/',1
I

/"

j'

/
/"

/"
4

II

I

1100 10
I I

2O

x/R

I
3O

I
4O

Figure3: SPLat r= 12R. For DNS: -- sum of modes n = 0 and 1;

sum of modes n = 0 and 1; --t- n = 0; --_--- n = 1.

.... n=0; ----- n-- 1, and for LNS:



Io

o

z/R

)
;_o

(a) DNS, n=0

Ny?
20 7,o

z/R

(b) LNS, n=0

o
1o 7o

z/R

(c) DNS, real part of 7*= 1

30

z/R

(d) LNS, real part of n = 1

111.

o

x/R

(e) DNS, imaginary part of n = I

o 1o 2o

x/R

(f) LNS, imaginary part of n = 1

Figure 4: Instantaneous perturbation pressure field from DNS and LNS at time 222 R/aoo, normalized with 2pocaoo.
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a clear problem with the source model.

3.2 Instantaneous Fields

Instantaneous pressure fields of the DNS and LNS data for n = 0 and 1 are shown in Fig. 4. For

both n = 0 and n = 1 the two solutions agree close to the inflow boundary. This region extends

further downstream for n = 1 than it does for n = 0 (as described in the next section), which is

consistent with the better match in amplitude discussed in the previous section. As expected,

further downstream we see small scales in the DNS data that are absent in the LNS data.
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It seems that the highest amplitude Mach wave radiation for n = 0 of the LNS data originates

from an area close to the inflow boundary (close to tile nozzle exit) while for n = 1 it radiates

primarily from a region around x _ 7R and extends beyond the end of the potential core. While

this difference in source position is not so significant for far-field directivity, it has a substantial

impact on directivity at r = 12R, as seen in Fig. 3, where the SPL of the zero azimuthal mode

of the LNS data at r = 12R peaks earlier that that of mode one.

Thus LNS computations provide a picture consistent with linear stability theory. On the

other hand, the DNS appears to have significant contributions from both the shear layer region,

and from a region near the end of the potential core.

3.3 Amplification of individual frequency components

The last two sections illustrated clear differences between the LNS and DNS. What remains

unclear is whether the discrepancies are due to the generation of higher frequencies in the

DNS (which despite its low Reynolds number does have broad-band turbulence spectra) or

whether there is error even at low frequencies. To examine this, the DNS and LNS data were

transformed to the frequency domain. The signal processing techniques used to transform the

DNS are documented in the Appendix.

The spatial development of the pressure disturbances at various Strouhal numbers (fD/Uj)

are compared at two radial positions (r = 1R and r = 4R) for azimuthal modes n = 0 and

n = 1 in Figs. 5 and 6, respectively. The pressure shown is _ = I_l/pa_, where _(x, y, St, n)

is the complex Fourier coefficient for the particular Strouhal number and azimuthal mode of

interest. LNS and DNS agree (as indeed they must) near the inflow boundary (where they are

forced with identical fluctuation field). Importantly, LNS provides an excellent representation

of the growth and decay of mode n = 1 at St = 0.143 (Fig. 6c), which is near the peak of

the noise spectrum. Reasonable agreement between LNS and DNS is also seen for n = 1 at

Strouhal numbers near the peak in the range 0.0952 <_ St <_ 0.1905. This is similar to the

experimental findings of Troutt & McLaughlin. 6 However, for frequencies away from the peak

in mode, the LNS fluctuations begin to decay closer to the inflow, and saturate with significantly

lower amplitude than the corresponding fluctuations from DNS. Another trend in Fig. 6 is that

the higher frequencies of the LNS calculation saturate earlier than the lower frequencies, an
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effectthatis consistent with linear stability theory, but not evident in the DNS.

For all frequencies, but (,specially near the peak Strouhal number, the agreement between

DNS and LNS is better for T_ = 1 than it is for n = 0. In DNS, both modes n = 0 and

n = 1 undergo similar amplification. In our simulations the azimuthal mode n = 0, unlike mode

n = 1, does not have an extended region of amplification (see Figs. 5 and 6). The wave number

spectrum of an instability wave at fixed frequency whose amplitude undergoes spatial growth

and decay is broadband and not discrete, which might include supersonic phase velocities and

consequently acoustic radiation. The more extended this region of amplification and decay the

most likely to have a traveling wave with a significant supersonic phase velocity. To this end the

azimuthal mode n = 1 of the present jet is more likely to have significant linear noise sources,

as it is evident in Fig. 6. The azimuthal mode n = 0, on the other hand, does not show an

extended amplification region at the present jet Reynolds number and shear layer thickness.

Consequently, the sound field in this case is dominated by the noise sources that are not present

in the linear theory and LNS (see Fig. 5).

The observation that turbulence near the end of the potential core is responsible for a

portion of the Mach wave radiation is not new. It was observed experimentally by Troutt and

McLaughlin, 6 whose near acoustic field measurements suggested that there were two distinct

sources at a given frequency, one originating from the shear layer region, the other further

downstream. In the present low Reynolds number simulation, the shear layers are initially thick

enough that modes with frequencies above St = 0.4 are damped immediately, which we believe

somewhat obscures this two-source effect. The noise from the shear layers and from further

downstream cannot be clearly distinguished.

4 Discussion and Summary

In this study we have evaluated the linear theory of Mach wave radiation in a perfectly expanded

supersonic jet. The relative noise directivity predicted by linear computation was similar to that

in the DNS, but the noise radiated by the first two modes in the linearized computation was

substantially weaker. For the jet considered in this study, the first azimuthal mode agreed better

with the DNS than the axisymmetric mode which was substantially underpredicted. At and
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near the peak Strouhal frequency, particularly fl)r n = 1, the amplification of disturbances in

the LNS matched closely that in the DNS. tlowever, for other frequencies the DNS data showed

amplification rates comparable to those of the peak Strouhal number, whereas ill the LNS data

the disturbances away from the peak Strouhal number were damped. Except near the peak

frequency, frequency modes in the DNS peaked in a region around and beyond the end of the

potential core, which is further downstream than the corresponding peak in the LNS simulation.

Until present, evidence supporting the linear theory of Mach wave radiation was indirect: the

general agreement of the directivity of the Math wave radiation and its peak Strouhal number.

While the theory is successful in predicting these, the present comparison shows that the noise

generation process is not well modeled quantitatively by the linear theory, even when no further

approximations (such as models of the incident turbulence or a slowly spreading mean flow)

are made. For the jet considered in this study, nonlinear effects are not only present, but they

dominate the noise process for the axisymmetric mode n --- 0, and contribute significantly to

the n = 1 mode at frequencies different from that of the peak radiation.

It is perhaps not surprising that the directivity of the acoustic field near the peak Strouhal

number is insensitive to the details of the source process. Indeed, the growth and decay of any

constant frequency convecting disturbance will produce such radiation, albeit at an amplitude

that depends critically on the growth and decay rates of the disturbance with streamwise dis-

tance. The present results show that except for the most amplified linear modes, the dominant

sources arise further downstream and as the result of a nonlinear process, even though they

produce similar overall directivity to the purely linear mechanism.

The need to include nonlinearity in order to correctly determine the spreading of the mean

flow and set the growth and decay of the instability waves, was recognized in the past. 1_ The

results here, suggest that for all but the most amplified frequency and azimuthal mode, nonlin-

earity plays a more significant role in Mach wave radiation, because the mean flow spreading is

inherently accounted for by using the mean flow predicted by the DNS in evolving the linearized

disturbances. We are not able to ascertain, based on the present methodology, whether the

differences between the linear and nonlinear computations it is due to a failure of LNS to cor-

rectly predict the amplification of disturbances in the near field (due to nonlinear saturation or

interaction of the modes), or whether it is nonlinear mechanisms for sound radiation (or both).
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Suchadistinctionis import_mtfi>rfuturemodelingefforts,andwehopeto addressit in future

work
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A Signal Processing Techniques

This appendix details methods for extracting frequency spectra from the data. The nature of

data required that different methods be used for the DNS versus LNS.

Discrete Fourier Transform for LNS. Since the LNS calculations are very nearly periodic,

the Fourier spectra were calculated using standard discrete Fourier methods. Assuming a con-

vection velocity of unity, the spatial periodicity of the inflow data was translated into a temporal

periodicity with a period T = 21R/aoo. The total duration of the LNS data was to aT, and it

required only a single flow through time to reach an essentially time periodic condition. Our

numerical experiments show that even one period of the LNS data is enough to accurately cal-

culate the spectra at the smallest frequency, f = a_/21R. The LNS data is sampled every time

step to avoid aliasing. The resulting sampling rate was f = lOOaoo/R, which is well above the

maximum frequency considered in this study.

Lomb-Scargle Periodogram for DNS. A direct discrete Fourier transform would not be reliable

in the case of DNS data because of several computational issues. Though the DNS data is quasi-

periodic near the inflow, it is fully aperiodic further downstream. Thus, imposing a periodicity

here would contaminate the high frequencies. In addition, the DNS data were computed with a

variable time step, and there were a few short-duration patches of missing DNS data. There are

2496 Samples between computational times 156R/aoo and 352R/a_, constituting more than 9

periods of the inflow forcing.

A technique that is suited to unequally sampled data which may include missing values is the

Lomb-Scargle periodogram._7" _s While a Fourier transform decomposes the time-series into a

fundamental periodicity and a number of harmonics, a periodogram shows the power of each of

these periodicities. A fast algorithm for computing the the Lomb-Scargle spectrum was used. 19

Since the sampling theorem applies only to evenly sampled data, the Nyquist frequency is

not defined for the unevenly sampled DNS data. Nevertheless, an average Nyquist frequency

can be defined as

1

IN = 2--_, (1)

where A'-t"is the average sampling interval. The average Nyquist frequency for the available DNS
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data is almost 13a,_/R, and is well above the highest frequencies considered in this study.

The sensitivity of the DNS frequency spectra to the period of the available data is presented

in Fig. 7. While there are some fluctuations in the results by changing the period of the data

the trends was well captured. All of the results presented in this study are calculated from data

spanned over a period of TapIR = 9.4 x 21.
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